Forcing and antifoundation
نویسنده
چکیده
It is proved that the forcing apparatus can be built and set to work in ZFCA (=ZFC minus foundation plus the antifoundation axiom AFA). The key tools for this construction are greatest fixed points of continuous operators (a method sometimes referred to as “corecursion”). As an application it is shown that the generic extensions of standard models of ZFCA are models of ZFCA again.
منابع مشابه
Erratum: "Forcing and antifoundation"
Sato Kentaro pointed out a serious flaw in the proof of the main result (Truth Lemma 3.15) of [1]. Namely the greatest fixed point, Φ∞, of the operator Φ in definition 3.12 is taken to be inside the model M , while Φ∞ in lemma 3.6 is actually constructed outside M . The two definitions need not be identical (at least I can’t prove that they are). So what lemma 3.15 of [1] actually proves is tha...
متن کاملComplete forcing numbers of polyphenyl systems
The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...
متن کاملFuzzy Forcing Set on Fuzzy Graphs
The investigation of impact of fuzzy sets on zero forcing set is the main aim of this paper. According to this, results lead us to a new concept which we introduce it as Fuzzy Zero Forcing Set (FZFS). We propose this concept and suggest a polynomial time algorithm to construct FZFS. Further more we compute the propagation time of FZFS on fuzzy graphs. This concept can be more efficient to model...
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملAnti-forcing number of some specific graphs
Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arch. Math. Log.
دوره 44 شماره
صفحات -
تاریخ انتشار 2005